111 research outputs found

    Quantitative modelling of the human–Earth System a new kind of science?

    No full text
    The five grand challenges set out for Earth System Science by the International Council for Science in 2010 require a true fusion of social science, economics and natural science—a fusion that has not yet been achieved. In this paper we propose that constructing quantitative models of the dynamics of the human–Earth system can serve as a catalyst for this fusion. We confront well-known objections to modelling societal dynamics by drawing lessons from the development of natural science over the last four centuries and applying them to social and economic science. First, we pose three questions that require real integration of the three fields of science. They concern the coupling of physical planetary boundaries via social processes; the extension of the concept of planetary boundaries to the human–Earth System; and the possibly self-defeating nature of the United Nation’s Millennium Development Goals. Second, we ask whether there are regularities or ‘attractors’ in the human–Earth System analogous to those that prompted the search for laws of nature. We nominate some candidates and discuss why we should observe them given that human actors with foresight and intentionality play a fundamental role in the human–Earth System. We conclude that, at sufficiently large time and space scales, social processes are predictable in some sense. Third, we canvass some essential mathematical techniques that this research fusion must incorporate, and we ask what kind of data would be needed to validate or falsify our models. Finally, we briefly review the state of the art in quantitative modelling of the human–Earth System today and highlight a gap between so-called integrated assessment models applied at regional and global scale, which could be filled by a new scale of model

    Airflow in waving plant canopies

    Get PDF

    The exploitation of thermophiles and their enzymes for the construction of multistep enzyme reactions from characterised enzyme parts

    Get PDF
    Biocatalysis is a field rapidly expanding to meet a demand for green and sustainable chemical processes. As the use of enzymes for synthetic chemistry becomes more common, the construction of multistep enzyme reactions is likely to become more prominent providing excellent cost and productivity benefits. However, the design and optimisation of multistep reactions can be challenging. An enzyme toolbox of well-characterised enzyme parts is critical for the design of novel multistep reactions. Furthermore, while whole-cell biocatalysis offers an excellent platform for multistep reactions, we are limited to the use of mesophilic host organisms such as Escherichia coli. The development of a thermophilic host organism would offer a powerful tool allowing whole-cell biocatalysis at elevated temperatures. This study aimed to investigate the construction of a multistep enzyme reaction from well-characterised enzyme parts, consisting of an esterase, a carboxylic acid reductase and an alcohol dehydrogenase. A novel thermostable esterase Af-Est2 was characterised both biochemically and structurally. The enzyme shows exceptional stability making it attractive for industrial biocatalysis, and features what is likely a structural or regulatory CoA molecule tightly bound near the active site. Five carboxylic acid reductases (CARs) taken from across the known CAR family were thoroughly characterised. Kinetic analysis of these enzymes with various substrates shows they have a broad but similar substrate specificity and that electron rich acids are favoured. The characterisation of these CARs seeks to provide specifications for their use as a biocatalyst. The use of isolated enzymes was investigated as an alternative to whole-cell biocatalysis for the multistep reaction. Additional enzymes for the regeneration of cofactors and removal of by-products were included, resulting in a seven enzyme reaction. Using characterised enzyme parts, a mechanistic mathematical model was constructed to aid in the understanding and optimisation of the reaction, demonstrating the power of this approach. Thermus thermophilus was identified as a promising candidate for use as a thermophilic host organism for whole-cell biocatalysis. Synthetic biology parts including a BioBricks vector, custom ribosome binding sites and characterised promoters were developed for this purpose. The expression of enzymes to complete the multistep enzyme reaction in T. thermophilus was successful, but native T. thermophilus enzymes prevented the biotransformation from being completed. In summary, this work makes a number of contributions to the enzyme toolbox of well-characterised enzymes, and investigates their combination into a multistep enzyme reaction both in vitro and in vivo using a novel thermophilic host organism.BBSRC, GS

    Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)

    Get PDF
    Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin–Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations

    “No powers, man!”: A student perspective on designing university smart building interactions

    Get PDF
    Smart buildings offer an opportunity for better performance and enhanced experience by contextualising services and interactions to the needs and practices of occupants. Yet, this vision is limited by established approaches to building management, delivered top-down through professional facilities management teams, opening up an interaction-gap between occupants and the spaces they inhabit. To address the challenge of how smart buildings might be more inclusively managed, we present the results of a qualitative study with student occupants of a smart building, with design workshops including building walks and speculative futuring. We develop new understandings of how student occupants conceptualise and evaluate spaces as they experience them, and of how building management practices might evolve with new sociotechnical systems that better leverage occupant agency. Our findings point to important directions for HCI research in this nascent area, including the need for HBI (Human-Building Interaction) design to challenge entrenched roles in building management

    Economic shifts in agricultural production and trade due to climate change

    Get PDF
    In addition to expanding agricultural land area and intensifying crop yields, increasing the global trade of agricultural products is one mechanism that humanity has adopted to meet the nutritional demands of a growing population. However, climate change will affect the distribution of agricultural production and, therefore, food supply and global markets. Here we quantify the structural changes in the global agricultural trade network under the two contrasting greenhouse gas emissions scenarios by coupling seven Global Gridded Crop Models and five Earth System Models to a global dynamic economic model. Our results suggest that global trade patterns of agricultural commodities may be significantly different from today's reality with or without carbon mitigation. More specifically, the agricultural trade network becomes more centralised under the high CO2 emissions scenario, with a few regions dominating the markets. Under the carbon mitigation scenario, the trade network is more distributed and more regions are involved as either importers or exporters. Theoretically, the more distributed the structure of a network, the less vulnerable the system is to climatic or institutional shocks. Mitigating CO2 emissions has the co-benefit of creating a more stable agricultural trade system that may be better able to reduce food insecurity

    Review of methods for assessing deposition of reactive nitrogen pollutants across complex terrain with focus on the UK

    Get PDF
    This review is a summary of the most up-to-date knowledge regarding assessment of atmospheric deposition of reactive nitrogen (Nr) pollutants across complex terrain in the UK. Progress in the understanding of the mechanisms and quantification of Nr deposition in areas of complex topography is slow, as no concerted attempts to measure the components of Nr in complex terrain have been made in the last decade. This is likely due to the inherent complexity of the atmospheric processes and chemical interactions which contribute to deposition in these areas. More than 300 studies have been reviewed, and we have consulted with a panel of international experts which we assembled for that purpose. We report here on key findings and knowledge gaps identified regarding measurement and modelling techniques used to quantify deposition of Nr across complex terrain in the UK, which depending on definition, may represent up to 60% of land coverage across Great Britain. The large body of peer reviewed papers, reports and other items reviewed in this study has highlighted both the strengths and weaknesses in the tools available to scientists, regulators and policy makers. This review highlights that there is no coherent global research effort to constrain the uncertainties in Nr deposition over complex terrain, despite the clearly identified risk of N deposition to ecosystems and water quality. All evidence identified that enhanced Nr deposition across complex terrain occurs, and magnitude of the enhancement is not known; however, there are major uncertainties particularly in the differences between modelled and measured wet deposition in complex terrain and representing accurate surface interactions in models. Using simplified estimates for Nr deposition, based on current understanding of current measurement and model approaches, an enhancement across UK complex terrain in the range of a factor of 1.4–2.5 (i.e. 40–150% larger than current estimates) is likely over complex upland terrain. If at the upper limits of this, then significantly more ecosystems in the UK would be at a direct risk of degradation, and the potential for long-term non-remediable water quality issues increased

    What lies beneath? Reconstructing the primitive magmas fueling voluminous silicic volcanism using olivine-hosted melt inclusions

    Get PDF
    Understanding the origins of the mantle melts that drive voluminous silicic volcanism is challenging because primitive magmas are generally trapped at depth. The central Taupƍ Volcanic Zone (TVZ; New Zealand) hosts an extraordinarily productive region of rhyolitic caldera volcanism. Accompanying and interspersed with the rhyolitic products, there are traces of basalt to andesite preserved as enclaves or pyroclasts in caldera eruption products and occurring as small monogenetic eruptive centers between calderas. These mafic materials contain MgO-rich olivines (Fo79–86) that host melt inclusions capturing the most primitive basaltic melts fueling the central TVZ. Olivine-hosted melt inclusion compositions associated with the caldera volcanoes (intracaldera samples) contrast with those from the nearby, mafic intercaldera monogenetic centers. Intracaldera melt inclusions from the modern caldera volcanoes of Taupƍ and Okataina have lower abundances of incompatible elements, reflecting distinct mantle melts. There is a direct link showing that caldera-related silicic volcanism is fueled by basaltic magmas that have resulted from higher degrees of partial melting of a more depleted mantle source, along with distinct subduction signatures. The locations and vigor of Taupƍ and Okataina are fundamentally related to the degree of melting and flux of basalt from the mantle, and intercaldera mafic eruptive products are thus not representative of the feeder magmas for the caldera volcanoes. Inherited olivines and their melt inclusions provide a unique “window” into the mantle dynamics that drive the active TVZ silicic magmatic systems and may present a useful approach at other volcanoes that show evidence for mafic recharge
    • 

    corecore